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ABSTRACT
The potential impact of blood flow simulations on the diag-
nosis and treatment of patients suffering from vascular dis-
ease is tremendous. Empowering models of the full arterial
tree can provide insight into diseases such as arterial hyper-
tension and enables the study of the influence of local factors
on global hemodynamics. We present a new, highly scalable
implementation of the lattice Boltzmann method which ad-
dresses key challenges such as multiscale coupling, limited
memory capacity and bandwidth, and robust load balancing
in complex geometries. We demonstrate the strong scaling
of a three-dimensional, high-resolution simulation of hemo-
dynamics in the systemic arterial tree on 1,572,864 cores
of Blue Gene/Q. Faster calculation of flow in full arterial
networks enables unprecedented risk stratification on a per-
patient basis. In pursuit of this goal, we have introduced
computational advances that significantly reduce time-to-
solution for biofluidic simulations.

Keywords
Category: time-to-solution

1. INTRODUCTION: OVERVIEW OF THE
PROBLEM AND ITS IMPORTANCE

One of the long-established challenges facing the medical
community is not only the prevention of major cardiovascu-
lar and cerebrovascular events such as myocardial infarction
and stroke, but also the identification of those individuals
most at risk. Despite advances in medical imaging and early
screening methods, 50% of men and 64% of women who die
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suddenly of cardiovascular disease have no previously de-
tected symptoms [4]. It is now possible to use medical imag-
ing to design computer simulations using the specific geome-
try and dynamics of a person’s circulatory system. Over the
last several decades, researchers have established the use of
these image-based hemodynamic simulations as a means to
gain insight into the localization and progression of vascu-
lar disease [16, 25, 36]. Such patient-specific hemodynamic
models can provide key insights into abnormalities that may
be associated with vascular disease risk factors. The com-
putational demands of these simulations have historically
restricted their size and scope, but advances in parallel algo-
rithms and computer hardware[26, 3, 12, 10] have extended
the reach of such simulations to much larger regions of the
circulatory system. Results stemming from these capabili-
ties have enabled at-risk patient identification and surgical
planning previously not possible through computational or
experimental studies for a range of diseases including, but
not limited to: congenital heart defects [24, 18], cerebral
aneurysm [11], aortic aneurysm [6, 42], and coronary artery
atherosclerosis [8, 20].

While there has been a great deal of progress made towards
enabling the study of flow in small segments of the circu-
latory system, computational demand has limited the ad-
vancement of systemic circulatory modeling. Systemic arte-
rial flow simulations could greatly improve the ability of clin-
icians to both identify and treat at-risk patients. For exam-
ple, models could assist in the early identification of patients
suffering from peripheral artery disease (PAD), a significant
manifestation of systemic atherosclerosis in which narrowed
arteries reduce flow to the extremities. The Framingham
Heart Study showed that PAD is associated with a two- to
four-fold increase in risk of mortality from cardiovascular
disease and a loss of 10 years in life expectancy [33]. Early
identification and intervention can reduce the likelihood of
IC, the clinical manifestation of PAD, thereby improving
cardiovascular morbidity and overall mortality [21].



One proven diagnostic used to identify the severity of PAD
and predict the likelihood of IC is the ankle-brachial index
(ABI), defined as the ratio of the systolic blood pressure
measured at the ankle to that in the arm[40]. Measurement
of the ABI has been shown to be a promising technique for
improving the accuracy of cardiovascular risk prediction [23,
22, 31, 9, 7]. Systemic arterial simulations can improve risk
stratification through calculation of ABI for a range of phys-
iological conditions not easily replicated in the physician’s
office, as well as predicting the impact of different interven-
tions on critical measurements such as the ABI. Image-based
simulations would provide further insight into the impact of
both disease states and potential treatment plans.

Figure 1: System arterial geometry. (a) Frontal
view. (b) Side view. The vessels shown in blue
demonstrate the arterial tree modeled in this work
including all arteries with diameters greater than
1mm. The gold indicates the region of the body
modeled in [12], the red corresponds to [26, 3, 10],
and the green represents the region modeled in [30].

Furthermore, risk indicators such as ABI need to be under-
stood for a range of physiological circumstances (exercise,
rest, at altitude, etc.), co-existing conditions (e.g. anemia or
polycythemia), and over long time durations. The ability to
quantify a patient’s specific risk state over time remains an
outstanding issue. In order to address such challenges
and facilitate future clinical translation, it is impera-
tive that we not only enable system-level simulation,
but also drastically reduce the time-to-solution so as
to be much faster than real time.

However, achieving such large-scale simulations presents an
immense computational challenge due to the geometric com-

plexity of the system, memory requirements associated with
high-resolution grids, and load balancing issues associated
with the processor core counts required. Simply storing the
data for the number of grid points required to model the
systemic arterial network requires memory on the scale of
that possessed by leadership-class supercomputers. In or-
der to tackle these challenges, we extend the design and
parallel efficiency of our C/C++ software, HARVEY [27],
a computational fluid dynamics code based on the Lattice
Boltzmann Method (LBM). Efficiently utilizing such super-
computer systems requires that work be assigned to over
one million processes while only computing and storing local
data. To address this, we present a lightweight load balanc-
ing algorithm to address the sparseness of vascular domains.
Furthermore, we introduce a load balance cost function in
order to analyze the computational load per unit of work.
We also demonstrate a strong correlation between our esti-
mated cost and measured cost-per-process.

In this work, we evaluate the scalability and performance of
HARVEY in a 3-dimensional vascular geometry consisting of
all arteries greater than 1 mm in diameter. We demonstrate
strong scaling to 1.57 million cores of the LLNL supercom-
puter, Sequoia, an IBM Blue Gene/Q system. We show that
HARVEY can successfully model complex geometries of an
unprecedented scale in an efficient manner.

This work presents major advancements to patient-specific
hemodynamic modeling through the following novel contri-
butions:

• First 3-dimensional high-resolution simulation of hemo-
dynamics in the systemic arterial tree at cellular reso-
lution
• Two new lightweight load balance algorithms for large-

scale CFD
• A 2x improvement in work-per-second over current

state-of-the-art
• A novel load balance cost function
• Single node optimization strategies for grid-based sten-

cil applications
• Data structure optimizations reducing our achieved

time-to-solution by 82%

The remainder of this paper is organized as follows. We
provide an overview of related work in the area of large-
scale hemodynamics in Section 2 which includes discussion
of the challenges in modeling the systemic arterial network.
In Section 3, we describe the lattice Boltzmann method. We
present our load balance algorithms and cost model in Sec-
tion 4 and evaluate their accuracy and overall application
performance in Section 5. Conclusions are found in Sec-
tion 6.

2. CURRENT STATE OF THE ART FOR SCI-
ENCE AND PERFORMANCE

The development of realistic image-based models of hemody-
namics in the human vasculature has been a topic of intense
focus over the last decade. Similarly, advances in high per-
formance computing have fostered the increase in scalabil-
ity of computational fluid dynamics algorithms. As Table 1



Geometry Resolution Suspended Bodies Award Status Citation
Periodic box 200 million RBCs 2010 Gordon Bell Winner [29]
Coronary arteries O(10µm) 300 million RBCs 2010 Gordon Bell Finalist [26]
Coronary arteries O(10µm) 450 million RBCs 2011 Gordon Bell Finalist [3]
Cerebral vasculature O(1nm) RBCs and platelets 2011 Gordon Bell Finalist [12]
Coronary arteries O(1µm) fluid only [10]
Aortofemoral O(10µm) fluid only [30]

Table 1: Large-scale hemodynamics simulations. We provide an overview of the region of the circulatory en-
capsulated, number of suspended bodies, and award status in landmark computational hemodynamic studies.

shows, these efforts have resulted in high impact research
pushing the limits of what is computationally possible year
after year. Blood flow calculations have been the subject of
three recent Gordon Bell Finalist papers, one of which won
the prize.

Even with such progress, each of these codes is limited to
modeling small regions of the circulatory system. The largest
high-resolution simulation of a confined area is by Goden-
schwager et al using the LBM to model coronary arteries at
1.276 µm resolution [10]. Works looking at larger regions
of the body typically employ a one-dimensional or lump pa-
rameter model (c.f. [34], [38], [1], [32]). Xiao et al presented
the first 3-dimensional model of unsteady flow in the large
primary arteries of the human circulatory system. This re-
search served as a feasibility study for utilizing a 3D frame-
work, but the resolution was too low to demonstrate grid
independence [41]. For the macroscopic quantities of inter-
est in these simulations such as pressure and shear stress, a
resolution of 20 µm or finer is needed for convergence. We re-
cently demonstrated efficient simulation of the aortofemoral
region at 10 µm resolution using 1.57 million cores of the
IBM Blue Gene/Q Sequoia Supercomputer at Lawrence Liv-
ermore National Laboratory [30].

In this work, we present high-resolution unsteady flow dy-
namics in a geometry consisting of all arteries above 1 mm
in diameter, extracted from computed tomography (CT) im-
ages. The segmentation and volumetric mesh construction
of the arterial geometry was performed by Simpleware Ltd.
Exeter, UK. For a 9 µm resolution simulation, the systemic
model requires an overall bounding box of 68909 x 25107 x
188584 grid points containing 509.0 billion fluid nodes and
4.5 billion wall, inlet, and outlet nodes. The results pre-
sented demonstrate the largest region modeled to date at a
resolution from which conclusions about key risk factors and
diagnostic tests such as the ABI can be drawn. Moreover,
as red blood cells range in size from 8-10 µm in diameter,
the systemic arterial hemodynamics are being modeled at
the cellular scale.

3. LATTICE BOLTZMANN
In this work, we use the LBM introduced by both the teams
of McNamera and Zanetti [19] and Higuera and Jimenez [15].
LBM is an alternative to the classical Navier-Stokes equa-
tion for computational fluid dynamics. The LBM comes
from kinetic theory and is a minimal form of the Boltzmann
equation. The simulation domain is discretized into a reg-
ular Cartesian grid and macroscopic flow properties are de-
rived from the collective dynamics of fictitious particles that
represent a local ensemble of molecules moving between the

grid points. An explicit time-stepping scheme that is partic-
ularly well-suited for massively parallel simulations is used:
the stencil is formed by local neighbors of each computa-
tional node, so in each time step information is only ex-
changed between neighboring nodes (c.f. [5, 39, 28]). For
more details regarding the LBM, see [35].

The governing equation describes the evolution of the distri-
bution function denoted by fi(~x,~ci, t), describing the prob-
ability of finding a particle at grid point ~x, at time t, with
discrete velocity ~ci. In this work, we use the 19-speed cu-
bic stencil, D3Q19, with the Bhatnager-Gross-Krook (BGK)
collision formulation using a single relaxation time. The grid
spacing is defined by ∆x, where discrete velocities connect
grid points to first and second neighbors on the 19-point
stencil. The fluid populations are advanced in a timestep
∆t through:

fi(~x+~ci∆t, t+ ∆t) = fi(~x, t)−ω∆t[fi(~x, t)−feq
i (~x, t)] (1)

The local equilibrium, feq
i (~x, t), is the result of a second-

order expansion in the fluid velocity of a local Maxwellian
with speed ~u and is defined by:

feq
i = wiρ

[
1 +

~ci · ~u
c2s

+
1

2

(
(~ci · ~u)2

(c2s)2
− u2

c2s

)]
(2)

where ρ denotes the density, ~u the average fluid speed, cs =
1/
√

3 the speed of sound in the lattice, and wi the weights
attributed to each discretized velocity as determined by the
lattice structure. Due to the use of explicit time-stepping,
LBM requires small time-steps that scale with ∆x2. In the
case of the 20 µm simulations discussed in this work, ap-
proximately 1 million time-steps are required to simulate
one heartbeat.

We implement the Zou-He boundary conditions [43], in which
a pulsating velocity is imposed at the inlet through a plug
profile at the entrance to the vessel and a constant pressure
is imposed at the outlets. While the inlet condition does not
assert the familiar parabolic profile that drops to zero close
to the wall, it does allow a total flow to be imposed at a
set value. In a short distance past the inlet, the parabolic
profile is recovered. This method uses information streamed
from the bulk fluid points alongside a completion scheme for
the unknown particle populations whose neighbors are out-
side the fluid domain. This method can be executed with
second-order accuracy [17]. In this paper, the modification
introduced by Hecht and Harting [14] in which the velocity
conditions are specified on-site is used, thus removing the



constraint that all points of a given inlet or outlet must be
aligned on a plane that is perpendicular to one of the three
main axes. Furthermore, this addition allows the bound-
ary conditions to be applied locally. A no-slip boundary
condition is imposed at the walls via the full bounce-back
method.

4. METHODOLOGY
One of the biggest challenges of modeling the full human
arterial system lies in its sheer size and scale. For the arterial
geometry shown in Fig. 1, only 0.15% of the total grid points
are fluid points. While keeping the entire bounding box in
memory would retain the regular Cartesian structure of the
underlying grid, the majority of data points would be unused
during the simulation. At 20 µm resolution, an array storing
only the node type (as a 1-byte char) of each point on the
grid would consume nearly 30 TB. It is therefore critical that
local data sizes be kept as small as possible and that data
duplication is avoided at all costs.

4.1 Data Structure
In the current implementation, each processor owns all fluid
and boundary nodes contained within a non-overlapping rect-
angular bounding box. Nodes needed from neighboring tasks
are identified during initialization and lists of local points
to be sent to other tasks are stored. Indirect addressing
is used to loop over all local fluid points as efficiently as
possible and requires minimal storage for the lattice Boltz-
mann distribution functions. Additional memory is used to
improve the speed of stencil calculations by storing local in-
dices of boundary points (walls, inlets or outlets) and offsets
for streaming rather than computing them on the fly during
each iteration. We found that these optimizations resulted
in a decrease in time-to-solution of over 82% when compared
to the timing at 131,072 tasks using indirect addressing only.

4.2 Cost function
Optimizing the load balance is a critical component for ef-
ficient utilization of modern supercomputers. On systems
such as Sequoia, an imbalance can result in hundreds of
thousands of cores sitting idle. To develop an efficient load
balance algorithm, it is necessary to analyze the computa-
tional load per unit of work, in this case one fluid lattice
update. The compute time in the simulation loop for a task
is governed by the number of active grid cells as well as
the number of source, sink, and boundary points. The vol-
ume of the simulation box assigned to the specific task may
also influence the run time. To create a performance model,
we gathered data on simulation loop time, number of fluid
points (nfluid), number of wall points (nwall), number of inlet
points (nin), number of outlet points (nout), and task bound-
ing box volume (V ) for each task in several simulations. We
then proceeded to fit a function C(nfluid, nwall, nin, nout, V )
of the following form to the data:

C = a · nfluid + b · nwall + c · nin + d · nout + e · V + γ,

where a, b, c, d, γ are parameters to be fit. The results were:

a = 1.47 · 10−4

b = −2.73 · 10−6

c = 4.63 · 10−5

d = 4.15 · 10−5

e = 2.88 · 10−9

γ = 8.18 · 10−2

The accuracy of the model can be approximated by the max-
imum relative underestimation compared to data,
maxtasks(compute time)/C − 1. For the parameters above,
with 4096 tasks and 4M fluid points in the input set, this
maximum is about 0.23, which indicates that a load balancer
using this performance model should achieve a maximum im-
balance of about 23%. The median and mean of the relative
underestimation are both very close to zero.

The average number of fluid points per unit volume is about
3%, so the volume term (e) is insignificant. The major con-
tributions stem from the number of fluid points (a) and the
constant term (γ). If we use only those parameters and fit
the data to a simpler performance model C∗ with:

C∗ = a∗ · nfluid + γ∗,

we get a∗ ≈ 1.50 · 10−4 and γ∗ ≈ 7.45 · 10−2. This performs
as well as the more detailed model above. We obtain a
maximum relative underestimation of the compute time of
about 0.22, and the median and mean are again very close
to zero. Fig. 2 shows scatter plots over the accuracy of
this simplified performance model. We conclude that load
balancing based on the number of fluid points in a rank
should allow excellent scaling.

4.3 Load Balance Algorithms
Load balance becomes an increasingly significant factor in
determining the run time of parallel applications as core
count increases. An inadequate work distribution can pre-
vent efficient scaling and cause some compute nodes to sit
idle or run out of memory. Furthermore, a load balancer
that scales poorly to large machines will lead to a notewor-
thy amount of compute time spent re-distributing work units
rather than advancing the simulation. To address this chal-
lenge, we developed two novel load balance algorithms. The
first uses a gap-aware structured grid decomposition mapped
onto a 3D process grid that is efficient and produces work
that maps well onto torus architectures. The second is a
recursive bisection load balancing scheme that is memory
lean, fast, and highly scalable.

4.3.1 Grid Load Balance Algorithm
In order to balance the demands of performance against
memory limitations, we have devised a lightweight load bal-
ance algorithm that distributes work in stages. Tasks are
mapped onto a three-dimensional process grid to simplify
communication and limit local data sizes during set up.
Each step is carried out iteratively until the maximum es-
timated workload on any task is as small as possible. To
limit memory consumption, fluid points are identified in one
dimensional strips, by first identifying which points in the
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Figure 2: Accuracy of simplified performance model,
C∗ = a∗ · nfluid + γ∗. Upper: Measured vs. estimated
time. Lower: Relative error in estimated time.

strip border surface mesh triangles and then using angle-
weighted pseudonormals[2] to determine which points are
on the interior of the surface. The space between interior
points is then filled with fluid nodes, which are assigned to
processors in that direction of the process grid.

A more detailed description of the algorithm follows:

1. Distribute xy-planes of grid across process planes

2. Compute interior grid points from surface mesh.

3. Estimate work of each xy-plane.

4. Reassign ownership of xy-planes, recompute interior
grid points.

5. Estimate work of local xy-planes as a function of y.

6. Assign y-strips of grid points to y-strips of tasks.

7. Distribute strips across tasks in x-direction.

From the measurements described in Section 4.2, it is rea-
sonable to assume that work is proportional to the number

of fluid nodes owned by a given task. Although the compu-
tational time in an indirect-addressing loop is insensitive to
the bounding box volume, communication and, more impor-
tantly, memory can be impacted if bounding boxes become
too large. We thus explicitly forbid bounding boxes from
spanning more than a few exterior points, so that tasks do
not end up owning points on multiple branches in the same
plane.

4.3.2 Recursive Bisection Load Balance Algorithm
The basic recursion premise is as follows: Assume that the
domain is geometrically confined to a brick shaped region,
and the computational work for this domain is to be divided
among P tasks. A cut parallel to one of its sides is made
through the brick, dividing the region into two parts (see
Fig. 3). The cores are divided into two groups of roughly
equal size and half of the brick is assigned to each group.
The optimization problem lies in assigning equal work per
task, i.e. solving N2 ∗ C(S1) = N1 ∗ C(S2), where C is
the cost function, N1 and N2 are the number of cores in
each group, and S1 and S2 are the two parts into which the
computational domain was cut. After the cut is made, and
core groups are assigned, the load balancer is called again for
each of the two groups. The subdivision of a task group into
two is done so that the two sub-groups are of as equal size as
possible. All subsequent steps are done in parallel, and each
task group recursively solves its load balancing problem for
its work part independently of the other task group. The
load balancing is complete when a task group consists of
only one task, after O(log(P )) steps.

Figure 3: Graphic representation of the recursive
bisection load balance algorithm. Cut planes are
determined by a histogram of the cost function,
and define new subdomains in which load balance
is again applied along the longest axial dimension.

Any cost function, C(x), of one variable that is non-decreasing
and which describes the work in part S1 for a cut x can be



used. A simple example is C(x) = the number of grid points
to the left of the cut. This choice would ensure that each
task gets the same number of grid points. For this work, we
used a cost function consisting of a weighted combination
of the different node types plus a term proportional to the
local bounding box volume.

The work partitioning algorithm is as follows:

1. Compute histogram of cost function in direction of cut
dimension.

2. Reduce histogram to obtain total work in task group’s
box.

3. Determine which bin divides total work into almost
equal halves.

This process can also be done recursively to refine the cut
point to a given accuracy. We used 32 bins, and 5 itera-
tions of the above algorithm. This achieves a cutting plane
with the fidelity of a single precision floating point number.
Eleven iterations would yield a data resolution of a double
precision floating point number. Assuming N simulation
data is roughly evenly distributed over P tasks, the cost
of the above algorithm is O(N/Plogb(1/ε)), where b is the
number of bins, and ε the required precision of the cutting
plane position relative to the length of the simulation box
along the cutting axis.

Once the cutting plane has been determined, a reduction op-
eration is used to determine whether the data is sufficiently
balanced and ensure that a data exchange will not cause
any tasks to run out of memory. If necessary, data is redis-
tributed (leveled) so that each task has the same amount of
work assigned. Each task then divides its data into two sets,
one containing the data to remain on the task subgroup to
which this task belongs, and one with the rest of the data.
After this, each task picks a companion task in the other
task group, and exchanges data with that task using point-
to-point messaging. At this point, the load balancer is called
recursively for each task subgroup until all subgroups consist
of a single task.

4.4 Single Node Optimization
The most computationally intense routine in our circula-
tory model calculates both collision and equilibrium relax-
ation. It is both heavily exercised and representative of a
large number of codes with similar characteristics regard-
ing both massive multithreading and utilization of SIMD
floating-point engines.

The code was modified to both take advantage of system ar-
chitectural features and avoid potential performance pitfalls
for the computation of three primary components: task dis-
tribution, density and momentum vector, and collision and
equilibrium relaxation.

First, there is the task distribution determination. This is
a fairly simple section of code, as we attempt to evenly dis-
tribute tasks (by count) to threads. One potential risk is em-
ploying a methodology such as farming out Ceiling(tasks/threads)
until no tasks are left to distribute. This works well if there
are large numbers of tasks or a small number of threads,

Figure 4: Image of the bounding boxes computed
by the grid load balance algorithm. The color cor-
responds to the bounding box volume, from green
(smallest) to red (largest).

but can greatly impact performance in the strong scaling
limit. Of smaller concern is the fact that the master thread
has more work to do. Thus, it is usually prudent to assign
thread 0 the lightest load possible and advisable to progress
from lower to higher task count as work is assigned to in-
creasing thread ids.

Next, there is the computation of the density and vector
function. In order to make effective use of SIMD operations
for this section of the code, we copied the data from the
discrete velocity direction and degeneracy structures con-
taining the increment values to an aligned array. Further,
we did this so that the 3-component velocities and associ-
ated degeneracies for a given stencil were adjacent; a good
match for our 4-way SIMD registers and operators. If this
data is in the L1 cache upon entry to the routine, it can
be fed to the SIMD FMAs and the operation can continue
at almost the peak rate of the system (there are some non-
SIMD components). However, if the data is not in the L1
cache, it should be efficiently prefetched, likely from the L2
cache, yielding between 33% of peak if the bulk of the data
resides in the main memory and > 80% of peak if it resides
in the L2 cache for the SIMDized components.

The code completes by computing the actual collision and
relaxation values. As the operations used for this compu-
tation require the values to be, in a sense, transposed from
their orientation in the previous step, we have many options.
The simplest path, is to transpose the data explicitly. There
are a few ways to do this, but the differences (related to what
will result insofar as outstanding load distributions are con-



cerned) are only important when the data is too large to fit
in the L1D cache and that is not the case for our stencils.
However, since the L1D cache is write-through, the advan-
tage from an explicit transpose in this case is somewhat
reduced. The more efficient path and one we will explore
for the 19-point stencil (and, perhaps, for the higher-order
39-point stencil, though this is made more difficult as there
are more points than SIMD registers in our system in this
case) is to permute the vectors while they are still in reg-
isters. While the permutes consume instruction cycles on
the floating-point unit, we believe that this path or a hy-
brid approach wherein some data is permuted in registers
while other data is permuted via a copy to a tiny array, thus
evening out the load between the two executions units, will
be a performance win in the strong scaling extreme.

5. PERFORMANCE RESULTS
In this section, we present strong scaling measurements on
the full 1.5 million core LLNL Sequoia Blue Gene/Q ma-
chine. We discuss the relevant hardware details, analyze
the impact of our kernel optimizations, and present strong
scaling results for the full systemic arterial network.

5.1 The Blue Gene/Q Compute Node Archi-
tecture

While the Blue Gene/Q compute node contains many fea-
tures, such as hardware support for speculative multithread-
ing [13], here we provide a summary concentrating on the
architectural features that were critical to achieving high
performance for our application.

The Blue Gene/Q compute node includes 16 user-space com-
pute cores, based upon the PowerPC A2 processor. The
core is designed for high-performance computing and high-
performance analytics capability. This purpose-based de-
sign encompasses the entire hardware gamut, from the novel
SIMD architecture, through the programmable L1 cache
prefetch units, and the large, multi-versioned L2 cache, to
the integrated networking unit.

Because of the demands of traditional high-performance com-
puting, it was important that the Blue Gene/Q cores have
high floating-point compute capacity. To that end, the QPX
floating-point engine [13], with the ability to execute a 4-
way SIMD fused-multiply-add (FMA) instruction every cy-
cle, was designed. The QPX unit is not only an improve-
ment, in terms of raw capability, over the previous Blue
Gene/L and Blue Gene/P FPUs [37], but, in order to pro-
vide a method to address the fact that data is often not
aligned or not stored in the appropriate format for simple
vector operations, the QPX unit also provides comprehen-
sive permute and duplicate register-to-register operations.
At a frequency of 1.6 GHz, each Blue Gene/Q core is capa-
ble of 12.8 GFLOPS, yielding a peak performance of 204.8
GFLOPS per node.

Floating-point capacity is not of great utility if one can-
not feed the compute engines useful data at the appropriate
rate. This is especially true for an energy-conserving, in-
order architecture such as the BG/Q compute chip. While
out-of-order execution units are generally considered to be
far more forgiving of stalls, as they can execute any of a

number of possible instructions, on Blue Gene/Q this issue
was addressed through a different, holistic set of measures.
The first is the 4-way symmetric multi-threading (SMT) de-
sign of the A2. In any given cycle the two functional units
(floating-point and integer/load-store) can execute concur-
rently, as long as there are two threads executing on the core.
With hardware SMT, an eight-entry (shared) outstanding
load queue, and independent register files for all threads,
high latency tolerance is achievable for many applications.

Hardware caches can be used to both reduce latency and
increase bandwidth available in compute-intensive portions
of the code. Blue Gene/Q cores each contain a 16KB L1
data cache and a 32-entry prefetch buffer that can be used
to manage prefetching of up to 16 streams of data. The
next layer of cache is the large (32 MB), high-bandwidth (in
excess of 8 bytes per core per clock cycle), L2 cache.

System construction was a pervasive concern in the Blue
Gene/Q design and the network and messaging unit on each
node of the system reflects this. There are several networks
on the system, but the network most heavily used to com-
municate data in scientific codes is the five-dimensional (5D)
torus. Through this network, each Blue Gene/Q code can
simultaneously send and receive data at 40 GB/s aggregate
through 10 chip-to-chip links.

5.2 SIMD and Threading Performance Anal-
ysis

The results of our single node optimizations can be seen in
Fig. 5. It shows the performance results for four optimiza-
tion stages of the LBM kernel on up to 16384 MPI tasks
of the IBM Blue Gene/Q. These smaller scale studies were
conducted to analyze the reduction of time-to-solution for a
reduced vessel geometry in order to optimally tune the code
for the large-scale simulations shown in Fig. 6.

Figure 5: Performance of the optimized collide ker-
nel on 16,384 MPI Tasks of the IBM Blue Gene/Q.

In this case, simulations of a human aorta were conducted at
a 20 µm resolution. As discussed in Section 4.4, we focused
our single node optimizations on the routine accounting for
the collision and equilibrium relaxation. For consistency,



only time spent in this kernel was taken into account to
study the performance impact of the optimizations. As ex-
pected, the original unoptimized kernel is the slowest, fol-
lowed by the threaded, the unthreaded SIMD version, and
finally the threaded SIMD kernel. The SIMD threaded ker-
nel outperformed the original implementation by 89% and
without SIMD by 79%, respectively. It also improved by
84% and 71% in terms of the average and maximum time
spent in the collide kernel, respectively.

5.3 Strong Scaling to 1,572,864 Tasks
Figure 6 shows the strong scaling of the full arterial geometry
at 20 µm resolution run on 8,192 to 98,304 nodes of the
Sequoia Blue Gene/Q machine. We observed a speedup of
5.2x over a 12x increase in node count, corresponding to a
parallel efficiency of 43%. Load imbalance ranged from 41%
to 162% with the grid balance algorithm and from 57% to
193% with the bisection algorithm, indicating that in both
cases the performance model needs improvement once work
is being distributed across more than a million tasks. The
improved performance translates to an unprecedented time-
to-solution for large-scale blood flow simulations. The time
spent in each iteration is shown in Table 2. The fastest time
per iteration was less than 0.2 sec, a significant decrease
in time-to-solution over the previous state-of-the-art for a
large, arterial geometry at high-resolution.

Figure 6: Strong scaling of 20µm resolution systemic
arterial geometry for each load balance algorithm.

MPI Tasks Iteration time (s)
262,144 0.46
524,288 0.31
1,572,864 0.17

Table 2: Time-to-solution of systemic arterial ge-
ometry at 20 µm resolution on up to 1,572,864 cores
of the IBM Blue Gene/Q supercomputer, using the
grid load balance algorithm described in Section 4.3.

Figure 7 shows the weak scaling and load imbalance of the
full arterial geometry. In order to reach a resolution of 9 µm
on the full machine, it was necessary to implement a very
lightweight initialization routine in which all surface mesh
and fluid data was fully distributed at all times and interior
points computed from single-bit xor operations to avoid ex-
ceeding the total memory of any given task while the initial
data was distributed across tasks. This highly distributed

approach was only compatible with the bisection load bal-
ancer, but allowed us to achieve unprecedented resolution
for a system of this size. This low-memory footprint po-
sitions us well to incorporate multiphysics models such as
deformable suspended bodies or move to even higher reso-
lutions in the future, as larger systems are deployed.

Figure 7: Weak scaling (black) and load imbalance
(red) of systemic arterial geometry using the bisec-
tion load balancer. The grid resolution was adjusted
to keep the average number of fluid nodes per core
as constant as possible, from 65.7 µm and 1.3 billion
fluid nodes on 4,096 Blue Gene/Q cores up to 9 µm
and 509.0 billion fluid nodes on 1,527,864 cores.

Load imbalance, which we define as the difference between
the average time and the maximum time spent in the itera-
tion loop normalized by the average iteration time, was a sig-
nificant obstacle to strong scaling for both load balance algo-
rithms on the full 1.57 million core Sequoia machine. Fig. 8
shows both the load imbalance and communication costs at
scale for the 20 µm arterial geometry using the grid load
balance algorithm. The communication costs remain fairly
constant for both the average and maximum times spent in
communication. For these systems, it is load imbalance and
not relative communication costs that inhibit strong scal-
ing. The deviation seen in Fig. 6 from ideal scaling is in
fact due almost entirely to load imbalance, specifically the
number of fluid points involved in each task’s stream and
collide routines. Because the load balance algorithms try to
equalize only the number of fluid nodes owned by each task,
increasingly large discrepancies in the actual work load arise
at large scale. To improve load balance at these scales, we
will need a cost model that takes into account the costs of
work supplied by neighboring fluid points, e.g. by including
a surface area term in addition to a volume term in our work
function.

The best performance metric for the LBM is million fluid
lattice updates per second (MFLUP/s), which allows direct
measurement of the amount of work completed in the sim-
ulation by counting only fluid nodes that are actually pro-
cessed by the compute kernel. Such a metric is especially
important when considering the sparse geometries compos-



Figure 8: Communication and load imbalance for
20 µm resolution systemic arterial geometry using
the grid load balancer.

Geometry MFLUP/s Citation

Coronary arteries 1.14 · 105 [26]
Coronary arteries 7.19 · 104 [3]
Coronary arteries 1.29 · 106 [10]
Aortofemoral 1.28 · 105 [30]
Systemic arterial 2.99 · 106 Presented here

Table 3: Demonstrated improvement over state-of-
the art achieved MFLUP/s.

ing the human vasculature. Table 3 shows estimated num-
ber of MFLUP/s for seminal papers leveraging the LBM for
large-scale hemodynamic simulations. The improved time-
to-solution mentioned above leads to a performance of 2.99∗
106 an MFLUP/s for the full arterial geometry simulated at
a 20µm resolution. We note that in the more complex
geometry of the systemic arterial network, we were
able to achieve twice the MFLUP/s performance as
previous work modeling flow in the coronary arteries
[10]. .

6. IMPLICATIONS FOR FUTURE SYSTEMS
AND APPLICATIONS

A property of vascular geometries is the small fraction of
space the actual simulated region covered in the overall bound-
ing box. Moreover, this sparse geometry represents an in-
creasingly complex domain as we move to larger and larger
regions of the human vasculature. In order to identify risk
factors for vascular disease and improve upon current diag-
nostic tests such as the ABI, we need to not only be able
to model the systemic arterial network, but do so at high-
resolution, under a wide range of physiological conditions,
and for long time scales. This underscores the necessity to
focus on the reduction in time-to-solution in order to enable
such simulations to lead to future clinical impact. Further-
more, the data structures and optimization techniques intro-
duced here have a wide applicability to other stencil-based
codes addressing sparse geometries such as encountered in
models of subsurface flow, biosecurity (e.g. the subway prob-
lem), and microfluidics.

As both core counts and hardware heterogeneity continue to
increase on the path to exascale, codes will have to be able
to not only support massive parallelism but also make effi-
cient use of a wide range of hardware-specific kernels. Our
implementation demonstrates our ability to do both. How-
ever, the increasing variety in node architecture and the in-
creasing power of accelerators will require more flexibility in
terms of how work is distributed across the machine. Im-
plementing a hierarchical blocked data structure along with
more flexible and robust load balance algorithms will likely
be needed before we can take full advantage of the next gen-
eration of supercomputing hardware.

By substantially improving the parallel scalability and re-
ducing the time-to-solution, we enable the simulation of
image-based hemodynamics on an unprecedented geomet-
ric resolution, the systemic arterial system at a resolution
corresponding to the size of a biological cell, and a timescale
that allows for a new level of risk stratification on a per-
patient basis. The benefit is two-fold: (1) As some circu-
latory phenomena manifest over relatively long time scales,
reducing the time-to-solution of these simulations facilitates
the study of groundbreaking lengths, and (2) The results of
diagnostic tests such as the ABI are strongly influenced by
conditions such as exercise, rest, temperature, altitude, or
co-existing conditions like anemia. The ability to model sev-
eral hundred cardiac cycles in a shortened wall clock time
makes it feasible to run a range of simulations at full-scale,
thus providing physicians with a more complete picture of a
patient’s vascular risk. This paper, has demonstrated a key
step in advancing patient-specific hemodynamics by intro-
ducing the first high-resolution simulation of the systemic
arterial network at a groundbreaking time-to-solution.
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